Planned schedule
Monday 16
9:00-10:00 - Introduction (Brian Conrad)
10:30-11:30 - The affine case over a perfect field (Nivedita Bhaskhar)
12:00-13:00 - Compactifications of tori (Ting-Yu Lee)
Tuesday 17
9:00-10:30 - The wonderful compactification of a semisimple adjoint group, I (Jacopo Gandini)
11:00-12:30 - The wonderful compactification of a semisimple adjoint group, II (Alexis Tchoudjem)
Wednesday 18
9:00-10:00 - Pseudo-complete varieties (Laurent Moret-Bailly)
10:30-11:30 - Group extensions controlling splitness (Philippe Gille)
12:00-13:00 - Dévissage, I (Yong Hu)
Thursday 19
9:00-10:00 - Dévissage, II (Yong Hu)
10:30-11:30 - Compactification of unipotent groups (Ziyang Gao)
12:00-13:00 - Weil restriction and Hilbert schemes (Laurent Moret-Bailly)
Friday 20
9:00-10:00 - The standard pseudo-reductive case (Philippe Gille)
10:30-11:30 - Examples of compactifications of exotic pseudo-reductive groups (Brian Conrad)
12:00-13:00 - Conclusions (Brian Conrad)
Bibliography
Section 8 of Borel-Tits, Groupes réductifs, Publ. Math. IHES 27 (1965), 55-150.
Section 10.2 of Bosch, Lütkebohmert, Raynaud, Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete 21 (1990), Springer.
Chapter 6.1 in Brion-Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics 231 (2005), Birkäuser.
Appendices of Conrad-Gabber-Prasad, Pseudo-reductive groups, Cambridge University Press (2010).
A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert. Séminaire Bourbaki, 6 (1960-1961), Exposé No. 221, 28.
N. Nitsure, Construction of Hilbert and Quot schemes, Fundamental Algebraic Geometry: Grothendieck's FGA explained, AMS "Math. Surveys Monogr." 123, 2005 ; p. 105-137.
Participants